Blood

- The only fluid tissue in the human body
- Classified as a connective tissue
 - Living cells = formed elements
 - Non-living matrix = plasma
Blood

Figure 10.1

PLASMA 55%

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Major functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>Solvent for carrying other substances</td>
</tr>
<tr>
<td>Salts (electrolytes)</td>
<td>Osmotic balance, pH buffering, and regulation of membrane permeability</td>
</tr>
<tr>
<td>Sodium</td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td></td>
</tr>
<tr>
<td>Chloride</td>
<td></td>
</tr>
<tr>
<td>Bicarbonate</td>
<td></td>
</tr>
<tr>
<td>Plasma proteins</td>
<td>Osmotic balance, pH buffering, Clotting of blood, Defense (antibodies), and lipid transport</td>
</tr>
<tr>
<td>Albumin</td>
<td></td>
</tr>
<tr>
<td>Fibrinogen</td>
<td></td>
</tr>
<tr>
<td>Globulins</td>
<td></td>
</tr>
</tbody>
</table>

Formed Elements (cells) 45%

<table>
<thead>
<tr>
<th>Cell type</th>
<th>Number (per mm² of blood)</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erythrocytes (red blood cells)</td>
<td>4–6 million</td>
<td>Transport oxygen and help transport carbon dioxide</td>
</tr>
<tr>
<td>Leukocytes (white blood cells)</td>
<td>4000–11,000</td>
<td>Defense and immunity</td>
</tr>
<tr>
<td>Basophil</td>
<td></td>
<td>Lymphocyte</td>
</tr>
<tr>
<td>Eosinophil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neutrophil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monocyte</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platelets</td>
<td>250,000–500,000</td>
<td>Blood clotting</td>
</tr>
</tbody>
</table>

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Physical Characteristics of Blood

- Color range
 - Oxygen-rich blood is scarlet red
 - Oxygen-poor blood is dull red
- pH must remain between 7.35–7.45
- Blood temperature is slightly higher than body temperature
Blood Plasma

- Composed of approximately 90 percent water
- Includes many dissolved substances
 - Nutrients
 - Salts (metal ions)
 - Respiratory gases
 - Hormones
 - Proteins
 - Waste products
Plasma Proteins

- Albumin – regulates osmotic pressure
- Clotting proteins – help to stem blood loss when a blood vessel is injured
- Antibodies – help protect the body from antigens
Formed Elements

- Erythrocytes = red blood cells
- Leukocytes = white blood cells
- Platelets = cell fragments
<table>
<thead>
<tr>
<th>Cell type</th>
<th>Occurrence in blood (per mm3)</th>
<th>Cell anatomy*</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erythrocytes (red blood cells, or RBCs)</td>
<td>4–6 million</td>
<td>Salmon-colored biconcave disks; anucleate; literally, sacs of hemoglobin; most organelles have been ejected</td>
<td>Transport oxygen bound to hemoglobin molecules; also transport small amount of carbon dioxide</td>
</tr>
<tr>
<td>Leukocytes (white blood cells, or WBCs)</td>
<td>4000–11,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Granulocytes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Neutrophils</td>
<td>3000–7000 (40–70% of WBCs)</td>
<td>Cytoplasm stains pale pink and contains fine granules, which are difficult to see; deep purple nucleus consists of three to seven lobes connected by thin strands of nucleoplasm</td>
<td>Active phagocytes; number increases rapidly during short-term or acute infections</td>
</tr>
<tr>
<td>• Eosinophils</td>
<td>100–400 (1–4% of WBCs)</td>
<td>Red coarse cytoplasmic granules; figure-8 or bilobed nucleus stains blue-red</td>
<td>Kill parasitic worms; increase during allergy attacks; might phagocytize antigen-antibody complexes and inactivate some inflammatory chemicals</td>
</tr>
</tbody>
</table>

Appearance when stained with Wright
<table>
<thead>
<tr>
<th>Cell type</th>
<th>Occurrence in blood (per mm³)</th>
<th>Cell anatomy*</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basophils</td>
<td>20–50 (0–1% of WBCs)</td>
<td>Cytoplasm has a few large blue-purple granules; U- or S-shaped nucleus with constrictions, stains dark blue</td>
<td>Granules contain histamine (vasodilator chemical), which is discharged at sites of inflammation</td>
</tr>
<tr>
<td>Agranulocytes</td>
<td>1500–3000 (20–45% of WBCs)</td>
<td>Cytoplasm pale blue and appears as thin rim around nucleus; spherical (or slightly indented) dark purple-blue nucleus</td>
<td>Part of immune system; one group (B lymphocytes) produces antibodies; other group (T lymphocytes) involved in graft rejection, fighting tumors and viruses, and activating B lymphocytes</td>
</tr>
<tr>
<td>Lymphocytes</td>
<td>100–700 (4–8% of WBCs)</td>
<td>Abundant gray-blue cytoplasm; dark blue-purple nucleus often kidney-shaped</td>
<td>Active phagocytes that become macrophages in the tissues; long-term “clean-up team”; increase in number during chronic infections such as tuberculosis</td>
</tr>
<tr>
<td>Monocytes</td>
<td>250,000–500,000</td>
<td>Essentially irregularly shaped cell fragments; stain deep purple</td>
<td>Needed for normal blood clotting; initiate clotting cascade by clinging to broken area; help to control blood loss from broken blood vessels</td>
</tr>
</tbody>
</table>

Appearance when stained with Wright
Erythrocytes (Red Blood Cells)

- The main function is to carry oxygen
- Anatomy of circulating erythrocytes
 - Biconcave disks
 - Essentially bags of hemoglobin
 - Anucleate (no nucleus)
 - Contain very few organelles
- Outnumber white blood cells 1000:1
Hemoglobin

- Iron-containing protein
- Binds strongly, but reversibly, to oxygen
- Each hemoglobin molecule has four oxygen binding sites
- Each erythrocyte has 250 million hemoglobin molecules
Leukocytes (White Blood Cells)

- Crucial in the body’s defense against disease
- These are complete cells, with a nucleus and organelles
- Able to move into and out of blood vessels (diapedesis)
- Can move by ameboid motion
- Can respond to chemicals released by damaged tissues
Leukocyte Levels in the Blood

- Normal levels are between 4,000 and 11,000 cells per millimeter
- Abnormal leukocyte levels
 - Leukocytosis
 - Above 11,000 leukocytes/ml
 - Generally indicates an infection
 - Leukopenia
 - Abnormally low leukocyte level
 - Commonly caused by certain drugs
Types of Leukocytes

- **Granulocytes**
 - Granules in their cytoplasm can be stained
 - Include neutrophils, eosinophils, and basophils

Figure 10.4
Types of Leukocytes

- Agranulocytes
 - Lack visible cytoplasmic granules
 - Include lymphocytes and monocytes

Figure 10.4
Granulocytes

- Neutrophils
 - Multilobed nucleus with fine granules
 - Act as phagocytes at active sites of infection

- Eosinophils
 - Large brick-red cytoplasmic granules
 - Found in response to allergies and parasitic worms
Granulocytes

- Basophils
 - Have histamine-containing granules
 - Initiate inflammation
Agranulocytes

- Lymphocytes
 - Nucleus fills most of the cell
 - Play an important role in the immune response

- Monocytes
 - Largest of the white blood cells
 - Function as macrophages
 - Important in fighting chronic infection
Platelets

- Derived from ruptured multinucleate cells (megakaryocytes)
- Needed for the clotting process
- Normal platelet count = 300,000/mm3
Hematopoiesis

- Blood cell formation
- Occurs in red bone marrow
- All blood cells are derived from a common stem cell (hemocytoblast)
- Hemocytoblast differentiation
 - Lymphoid stem cell produces lymphocytes
 - Myeloid stem cell produces other formed elements
Fate of Erythrocytes

- Unable to divide, grow, or synthesize proteins
- Wear out in 100 to 120 days
- When worn out, are eliminated by phagocytes in the spleen or liver
- Lost cells are replaced by division of hemocytoblasts
Control of Erythrocyte Production

- Rate is controlled by a hormone (erythropoietin)
- Kidneys produce most erythropoietin as a response to reduced oxygen levels in the blood
- Homeostasis is maintained by negative feedback from blood oxygen levels
Control of Erythrocyte Production

Figure 10.5

Stimulus: Decreased RBC count, decreased availability of O\textsubscript{2} to blood, or increased tissue demands for O\textsubscript{2}

Reduced O\textsubscript{2} levels in blood

Kidney releases erythropoietin

Erythropoietin stimulates

Red bone marrow

Enhanced erythropoiesis

More RBCs

Increased O\textsubscript{2}-carrying ability of blood

Imbalance

Normal blood oxygen levels

Imbalance

Increased O\textsubscript{2}-carrying ability of blood

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Hemostasis

- Stoppage of blood flow
- Result of a break in a blood vessel
- Hemostasis involves three phases
 - Platelet plug formation
 - Vascular spasms
 - Coagulation
Platelet Plug Formation

- Collagen fibers are exposed by a break in a blood vessel
- Platelets become “sticky” and cling to fibers
- Anchored platelets release chemicals to attract more platelets
- Platelets pile up to form a platelet plug
Vascular Spasms

- Anchored platelets release serotonin
- Serotonin causes blood vessel muscles to spasm
- Spasms narrow the blood vessel, decreasing blood loss
Coagulation

- Injured tissues release thromboplastin
- PF$_3$ (a phospholipid) interacts with thromboplastin, blood protein clotting factors, and calcium ions to trigger a clotting cascade
- Prothrombin activator converts prothrombin to thrombin (an enzyme)
Coagulation

- Thrombin joins fibrinogen proteins into hair-like fibrin
- Fibrin forms a meshwork (the basis for a clot)
Blood Clotting

- Blood usually clots within 3 to 6 minutes
- The clot remains as endothelium regenerates
- The clot is broken down after tissue repair
Undesirable Clotting

- Thrombus
 - A clot in an unbroken blood vessel
 - Can be deadly in areas like the heart
- Embolus
 - A thrombus that breaks away and floats freely in the bloodstream
 - Can later clog vessels in critical areas such as the brain
Bleeding Disorders

- Thrombocytopenia
 - Platelet deficiency
 - Even normal movements can cause bleeding from small blood vessels that require platelets for clotting

- Hemophilia
 - Hereditary bleeding disorder
 - Normal clotting factors are missing
Blood Groups and Transfusions

- Large losses of blood have serious consequences
 - Loss of 15 to 30 percent causes weakness
 - Loss of over 30 percent causes shock, which can be fatal
- Transfusions are the only way to replace blood quickly
- Transfused blood must be of the same blood group
Human Blood Groups

- Blood contains genetically determined proteins
- A foreign protein (antigen) may be attacked by the immune system
- Blood is “typed” by using antibodies that will cause blood with certain proteins to clump (agglutination)
Human Blood Groups

- There are over 30 common red blood cell antigens
- The most vigorous transfusion reactions are caused by ABO and Rh blood group antigens
ABO Blood Groups

- Based on the presence or absence of two antigens
 - Type A
 - Type B
- The lack of these antigens is called type O
ABO Blood Groups

- The presence of both A and B is called type AB
- The presence of either A or B is called types A and B, respectively
Rh Blood Groups

- Named because of the presence or absence of one of eight Rh antigens (agglutinogen D)
- Most Americans are Rh$^+$
- Problems can occur in mixing Rh$^+$ blood into a body with Rh$^-$ blood
Rh Dangers During Pregnancy

- Danger is only when the mother is Rh\(^-\) and the father is Rh\(^+\), and the child inherits the Rh\(^+\) factor
Rh Dangers During Pregnancy

- The mismatch of an Rh\(^-\) mother carrying an Rh\(^+\) baby can cause problems for the unborn child
 - The first pregnancy usually proceeds without problems
 - The immune system is sensitized after the first pregnancy
 - In a second pregnancy, the mother’s immune system produces antibodies to attack the Rh\(^+\) blood (hemolytic disease of the newborn)
Blood Typing

- Blood samples are mixed with anti-A and anti-B serum
- Coagulation or no coagulation leads to determining blood type
- Typing for ABO and Rh factors is done in the same manner
- Cross matching – testing for agglutination of donor RBCs by the recipient’s serum, and vice versa
Developmental Aspects of Blood

• Sites of blood cell formation
 • The fetal liver and spleen are early sites of blood cell formation
 • Bone marrow takes over hematopoiesis by the seventh month
• Fetal hemoglobin differs from hemoglobin produced after birth