Chapter 3

Cells and Tissues

Slides 3.1 – 3.89

Lecture Slides in PowerPoint by Jerry L. Cook

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Cells and Tissues

- Carry out all chemical activities needed to sustain life
- Cells are the building blocks of all living things
- Cells are bathed in a dilute saltwater solution called interstitial fluid derived from the blood
- Tissues are groups of cells that are similar in structure and function → organs → organ systems → organism
Anatomy of the Cell

- Cells are not all the same
 - Size, shape, and function very different
- All cells share general structures
- Cells are organized into three main regions
 - Nucleus
 - Cytoplasm
 - Plasma membrane
The Nucleus

- Control center of the cell
- Contains genetic material (DNA)
- Three regions
 - Nuclear membrane
 - Nucleolus
 - Chromatin
Nuclear Membrane

- Barrier of the nucleus
- Consists of a selectively permeable, double phospholipid membrane
- Contains nuclear pores that allow for exchange of material with the rest of the cell
- Inside is the nucleoplasm containing the nucleoli and chromatin – fluid similar to cytoplasm
Nucleoli

- Nucleus contains one or more nucleoli (nucleolus - singular)
- Sites of ribosome production and partial assembly
 - Ribosomes then migrate to the cytoplasm through nuclear pores
Chromatin

- Composed of unwound DNA and protein – used for making proteins
- Scattered throughout the nucleus
- Chromatin condenses to form chromosomes when the cell divides
Plasma Membrane

- Barrier for cell contents
- Semi-permeable, Double phospholipid layer
 - Hydrophilic heads – water loving
 - Hydrophobic tails – water fearing
- Other materials in plasma membrane
 - Protein – receptors, cell recognition and communication, channels for transport
 - Cholesterol – keep membrane fluid and stable
 - Glycoproteins – receptors, cell-to-cell interactions
Plasma Membrane

Figure 3.2
Plasma Membrane Specializations

- Microvilli
 - Finger-like projections that increase surface area for absorption
Plasma Membrane Specializations

Membrane junctions

- **Tight junctions** – impermeable, leakproof sheets
- **Desmosomes** – anchorings that prevent cells from being separated
- **Gap junctions** – allow communication between cells through connexons that span the two cell membranes
Cytoplasm

- Material outside the nucleus and inside the plasma membrane
 - Cytosol
 - Fluid containing nutrients dissolved in water that suspends other elements
 - Organelles
 - Metabolic machinery of the cell
 - Inclusions
 - Non-functioning units – stored nutrients such as fat droplets, glycogen granules, pigments, and mucus
Cytoplasmic Organelles

- Chromatin
- Nucleoli
- Nucleus
- Plasma membrane
- Nuclear envelope
- Smooth endoplasmic reticulum
- Cytosol
- Lysosome
- Mitochondrion
- Centrioles
- Microvilli
- Microfilament
- Microtubule
- Intermediate filaments
- Golgi apparatus
- Rough endoplasmic reticulum
- Ribosomes
- Peroxisome

Figure 3.4

Secretion being released from cell by exocytosis
Cytoplasmic Organelles

- Mitochondria
 - “Powerhouses” of the cell
 - Change shape continuously
 - Has a double membrane and had its own DNA
 - Carry out reactions where oxygen is used to break down food – cell respiration
 - Provides ATP for cellular energy
Cytoplasmic Organelles

- Ribosomes
 - Made of protein and RNA
 - Sites of protein synthesis
 - Found at two locations
 - Free in the cytoplasm
 - Attached to rough endoplasmic reticulum
Cytoplasmic Organelles

- Endoplasmic reticulum (ER)
 - Fluid-filled tubules for carrying substances
 - Two types of ER
 - Rough Endoplasmic Reticulum
 - Studded with ribosomes
 - Site where building materials of cellular membrane are formed
 - Smooth Endoplasmic Reticulum
 - Functions in cholesterol synthesis and breakdown, fat metabolism, and detoxification of drugs
Cytoplasmic Organelles

- Golgi apparatus
 - Modifies and packages proteins
 - Produces different types of packages
 - Secretory vesicles – contain proteins for export
 - Cell membrane components to be added to the plasma membrane
 - Lysosomes – contain hydrolytic enzymes
Cytoplasmic Organelles

Figure 3.5

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Cytoplasmic Organelles

- **Lysosomes**
 - Contain enzymes that digest non-usable materials within the cell such as old organelles as well as bacteria and viruses

- **Peroxisomes**
 - Membranous sacs of oxidase enzymes
 - Detoxify harmful substances using O$_2$
 - Break down free radicals (highly reactive chemicals with free electrons)
 - Replicate by pinching in half
Cytoplasmic Organelles

- Cytoskeleton
 - Network of protein structures that extend throughout the cytoplasm
 - Provides the cell with an internal framework
 - Determines cell shape, supports organelles, provides path for intracellular transport, involved in cell movement
Cytoplasmic Organelles

Cytoskeleton

- Three different types

 - Microfilaments – cell motility and changed in cell shape – actin and myosin
 - Intermediate filaments – help form desmosomes and internal guy wires
 - Microtubules – determine overall shape of a cell and location of organelles
Cytoplasmic Organelles

- **Centrioles**
 - Rod-shaped bodies made of microtubules that lie at right angles to each other and near the nucleus
 - Direct formation of mitotic spindle during cell division
Cellular Projections

- Cilia and Flagella
 - Not found in all cells
 - Used for movement
 - Cilia moves materials across the cell surface – usually short and many
 - Flagellum propels the cell – usually long and few in number
Cell Diversity

1. **Cells that connect body parts**
 - Googi apparatus
 - Nucleus
 - Rough ER
 - Fiber outside the cell
 - No organelles

 Fibroblast

 Erythrocyte (red blood cell)

2. **Cells that cover and line body organs**
 - Intermediate filaments
 - Nucleus

 Epithelial cell

Figure 3.7; 1, 2
Cell Diversity

3 Cells that move organs and body parts

Skeletal muscle cell

Smooth muscle cell

Figure 3.7; 3
Cell Diversity

4. Cell that stores nutrients
 - Lipid droplet
 - Nucleus
 - Fat cell

5. Cell that fights disease
 - Pseudopods
 - Lysosomes
 - Macrophage cell

Figure 3.7; 4, 5
Cell Diversity

6. **Cell that gathers information and controls body functions**

- Rough ER
- Processes
- Nucleus

Nerve cell

7. **Cells of reproduction**

- Rough endoplasmic reticulum
- Golgi apparatus
- Mitochondria
- Cytoskeleton
- Nucleus
- Lysosome

Ovum (egg)

- Nucleus
- Flagellum

Sperm

Figure 3.7; 6, 7

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings

Slide 3.27
Solutions and Transport

- Solution – homogeneous mixture of two or more components
 - Solvent – dissolving medium
 - Solutes – components in smaller quantities within a solution
- Intracellular fluid – nucleoplasm and cytosol
- Interstitial fluid – fluid on the exterior of the cell
Cellular Physiology: Membrane Transport

- Membranes are selectively permeable –
- Membrane Transport – movement of substance into and out of the cell
- Transport is by two basic methods
 - Passive transport
 - No energy is required
 - Active transport
 - The cell must provide metabolic energy
Selective Permeability

- The plasma membrane allows some materials to pass while excluding others.
- This permeability includes movement into and out of the cell.
Passive Transport Processes

Diffusion

- Particles tend to distribute themselves evenly within a solution
- Movement is from high concentration to low concentration, or down a concentration gradient
- Movement is due to kinetic energy in the molecules and affected by size and temperature
Passive Transport Processes

- Types of diffusion
 - Simple diffusion – Passive diffusion
 - Unassisted process
 - Solutes are lipid-soluble materials or small enough to pass through membrane pores
Passive Transport Processes

Types of diffusion

- Osmosis – simple diffusion of water
 - Highly polar water easily crosses the plasma membrane
 - Occurs all the time
- Facilitated diffusion
 - Substances require a protein carrier for passive transport
 - Still moving down concentration gradient and so no energy is needed
Diffusion through the Plasma Membrane

Figure 3.9
Passive Transport Processes

- Filtration
 - Water and solutes are forced through a membrane by fluid, or hydrostatic pressure
 - A pressure gradient must exist
 - Solute-containing fluid is pushed from a high pressure area to a lower pressure area
 - Not very selective on what is filtered out – size
Active Transport Processes

- Transport substances that are unable to pass by diffusion
 - They may be too large
 - They may not be able to dissolve in the fat core of the membrane
 - They may have to move against a concentration gradient
- Two common forms of active transport
 - Solute pumping
 - Bulk transport
Active Transport Processes

- Solute pumping
 - Amino acids, some sugars and ions are transported by solute pumps
 - ATP energizes protein carriers, and in most cases, moves substances against concentration gradients
 - Can transport different molecules different directions such as the sodium-potassium pump
Active Transport Processes

Figure 3.10

1. Binding of cytoplasmic Na\(^+\) to the pump protein stimulates phosphorylation by ATP, which causes the pump protein to change its shape.

2. The shape change expels Na\(^+\) to the outside. Extracellular K\(^+\) binds, causing release of the phosphate group.

3. Loss of phosphate restores the original conformation of the pump protein. K\(^+\) is released and Na\(^+\) sites are ready to bind Na\(^+\) again; the cycle repeats.
Active Transport Processes

- Bulk transport
 - Exocytosis
 - Moves materials out of the cell
 - Material is carried in a membranous vesicle
 - Vesicle migrates to plasma membrane
 - Vesicle combines with plasma membrane
 - Material is emptied to the outside
Active Transport Processes

Figure 3.11

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Active Transport Processes

- Bulk transport
 - Endocytosis
 - Extracellular substances are engulfed by being enclosed in a membranous vesicle
 - Types of endocytosis
 - Phagocytosis – cell eating
 - Pinocytosis – cell drinking
Active Transport Processes

(a) Phagocytosis

(b) Bulk-phase endocytosis

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Cell Life Cycle

- Series of changes a cell goes through from the time it is formed until it divides

- Cells have two major periods
 - Interphase – metabolic phase
 - Longest phase where the cell grows
 - Cell carries on metabolic processes
 - Cell division
 - Cell replicates itself
 - Function is to produce more cells for growth and repair processes
DNA Replication

- Genetic material duplicated and readies a cell for division into two cells
- Occurs toward the end of interphase
- DNA uncoils and each side serves as a template
Events of Cell Division

- **Mitosis**
 - Division of the nucleus
 - Results in the formation of two daughter nuclei

- **Cytokinesis**
 - Division of the cytoplasm
 - Begins when mitosis is near completion
 - Results in the formation of two daughter cells
Stages of Mitosis

- Interphase
 - No cell division occurs
 - The cell carries out normal metabolic activity and growth

- Prophase
 - First part of cell division
 - Centromeres migrate to the poles and direct the assembly of the mitotic spindle
 - Chromosomes form
Stages of Mitosis

- Metaphase
 - Spindle from centromeres are attached to chromosomes that are aligned in the center of the cell
Stages of Mitosis

- **Anaphase**
 - Daughter chromosomes are pulled toward the poles
 - The cell begins to elongate

- **Telophase**
 - Daughter nuclei begin forming
 - A cleavage furrow (for cell division) begins to form and finished dividing the cell into two by the end of cytokinesis
 - Everything from prophase is reversed
Stages of Mitosis

Figure 3.14; 1
Stages of Mitosis

Figure 3.14; 2
Protein Synthesis

- Gene – DNA segment that carries a blueprint for building one protein
- Proteins have many functions
 - Building materials for cells
 - Act as enzymes (biological catalysts)
- RNA is essential for protein synthesis
Role of RNA

- **Transfer RNA (tRNA)**
 - Transfers appropriate amino acids to the ribosome for building the protein

- **Ribosomal RNA (rRNA)**
 - Helps form the ribosomes along with proteins where proteins are built

- **Messenger (mRNA)**
 - Carries the instructions for building a protein from the nucleus to the ribosome
Transcription and Translation

- Transcription
 - Transfer of information from DNA’s base sequence to the complimentary base sequence of mRNA – switching T for U

- Translation
 - Base sequence of mRNA is translated to an amino acid sequence based on codon/anticodon complements
 - Amino acids are the building blocks of proteins
Protein Synthesis

Figure 3.15
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Body Tissues

- Cells are specialized for particular functions

- Tissues
 - Groups of cells with similar structure and function
 - Four primary types
 - Epithelium - covering
 - Connective tissue - support
 - Nervous tissue - control
 - Muscle - movement
Epithelial Tissues

- Found in different areas
 - Body coverings
 - Body linings
 - Glandular tissue

- Functions
 - Protection
 - Absorption
 - Filtration
 - Secretion
Epithelium Characteristics

- Cells fit closely together
- Tissue layer always has one free surface – unattached, the apical surface
- The lower surface is bound by a basement membrane – structureless material secreted by the cells
- Avascular (have no blood supply) – depend on diffusion
- Regenerate easily if well nourished
Classification of Epithelium

- Number of cell layers
 - Simple – one layer
 - Stratified – more than one layer

Figure 3.16a
Classification of Epithelium

- **Shape of cells**
 - Squamous – flattened
 - Cuboidal – cube-shaped
 - Columnar – column-like

![Figure 3.16b](image)
Simple Epithelium

Simple squamous

- Single layer of flat cells
- Usually forms membranes where filtration or exchange occurs
 - Lines body cavities – serous membranes
 - Lines lungs and capillaries

Figure 3.17a
Simple Epithelium

- Simple cuboidal
 - Single layer of cube-like cells
 - Common in glands and their ducts
 - Forms walls of kidney tubules
 - Covers the ovaries

Figure 3.17b
Simple Epithelium

- **Simple columnar**
 - Single layer of tall cells that fit closely together
 - Often includes goblet cells, which produce mucus
 - Lines digestive tract
 - Mucosae – mucous membranes line body cavities open to the body exterior

Figure 3.17c
Simple Epithelium

- Pseudostratified columnar
 - Single layer, but some cells are shorter than others
 - Often looks like a double cell layer
 - Sometimes ciliated, such as in the respiratory tract
 - May function in absorption or secretion

Figure 3.17d
Stratified Epithelium – 2+ layers

Stratified squamous

- Cells at the free edge are flattened while cells close to the basement membrane are cuboidal or columnar
- Found as a protective covering where friction is common
- Locations
 - Skin
 - Mouth
 - Esophagus

Figure 3.17e

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Stratified Epithelium

- Stratified cuboidal
 - Two layers of cuboidal cells
- Stratified columnar
 - Surface cells are columnar, cells underneath vary in size and shape
- Stratified cuboidal and columnar
 - Rare in human body
 - Found mainly in ducts of large glands
Stratified Epithelium

- Transitional epithelium
 - Shape of cells depends upon the amount of stretching
 - Cells of the basal layer are cuboidal or columnar while those at the free surface vary
 - Lines organs of the urinary system

Figure 3.17f

Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Glandular Epithelium

- Gland – one or more cells that secretes a particular product – a secretion, which contains protein molecules in an aqueous fluid

- Two major gland types
 - Endocrine gland
 - Ductless
 - Secretions are hormones – diffuse into blood
 - Exocrine gland
 - Empty through ducts to the epithelial surface
 - Include sweat and oil glands
Connective Tissue

- Found everywhere in the body
- Includes the most abundant and widely distributed tissues

Functions
- Binds body tissues together
- Supports the body
- Provides protection
Connective Tissue Characteristics

- Variations in blood supply
 - Some tissue types are well vascularized
 - Some have poor blood supply or are avascular such as tendons, ligaments, and cartilage

- Extracellular matrix
 - Non-living material that surrounds living cells
Extracellular Matrix

- Two main elements
 - Ground substance – mostly water along with adhesion proteins and polysaccharide molecules
 - Fibers
 - Produced by the cells
 - Three types
 - Collagen fibers
 - Elastic fibers
 - Reticular fibers
Connective Tissue Types

- Bone (osseous tissue)
 - Composed of:
 - Bone cells in lacunae (cavities)
 - Hard matrix of calcium salts
 - Large numbers of collagen fibers
 - Used to protect and support the body

Figure 3.18a
Connective Tissue Types

- Hyaline cartilage
 - Most common cartilage
 - Composed of:
 - Abundant collagen fibers
 - Rubbery matrix
 - Entire fetal skeleton is hyaline cartilage

Figure 3.18b
Connective Tissue Types

- Fibrocartilage
 - Highly compressible
 - Example: forms cushion-like discs between vertebrae

Figure 3.18c
Connective Tissue Types

- Elastic cartilage
 - Provides elasticity
 - Example: supports the external ear
Connective Tissue Types

Dense connective tissue

- Main matrix element is collagen fibers
- Crowded between the collagen fibers are rows of cells called fibroblasts
- Examples
 - Tendon – attach muscle to bone
 - Ligaments – attach bone to bone

Figure 3.18d
Loose Connective Tissue Types

- Areolar connective tissue
 - Most widely distributed connective tissue
 - Soft, pliable tissue
 - Functions as universal packing tissue and connective tissue glue
 - Contains all fiber types
 - Can soak up excess fluid

Figure 3.18e
Connective Tissue Types

- Adipose tissue
 - Matrix is an areolar tissue in which fat globules predominate
 - Many cells contain large lipid deposits
 - Functions
 - Insulates the body
 - Protects some organs
 - Serves as a site of fuel storage
Connective Tissue Types

- Reticular connective tissue
 - Delicate network of interwoven fibers
 - Forms stroma (internal supporting network) of lymphoid organs
 - Lymph nodes
 - Spleen
 - Bone marrow

Figure 3.18g
Connective Tissue Types

- Blood
 - Blood cells surrounded by fluid matrix
 - Fibers are visible during clotting
 - Functions as the transport vehicle for materials
Muscle Tissue

- Function is to produce movement by contracting or shortening
- Three types
 - Skeletal muscle
 - Cardiac muscle
 - Smooth muscle
Muscle Tissue Types

- **Skeletal muscle**
 - Can be controlled voluntarily
 - Cells attach to connective tissue
 - Cells are striated
 - Cells have more than one nucleus

Figure 3.19b
Muscle Tissue Types

- Cardiac muscle
 - Found only in the heart
 - Function is to pump blood (involuntary)
 - Cells attached to other cardiac muscle cells at intercalated disks
 - Cells are striated
 - One nucleus per cell

Figure 3.19c
Muscle Tissue Types

- Smooth muscle – visceral muscle
 - Involuntary muscle
 - Surrounds hollow organs
 - Attached to other smooth muscle cells
 - No visible striations
 - One nucleus per cell
 - Spindle shaped

Figure 3.19a
Nervous Tissue

- Neurons and nerve supporting cells (those that insulate, support, and protect neurons)
- Function is to receive and send impulses to other areas of the body
 - Irritability
 - Conductivity
Tissue Repair (wound Healing)

- Regeneration
 - Replacement of destroyed tissue by the same kind of cells

- Fibrosis
 - Repair by dense fibrous connective tissue (scar tissue)

- Determination of method
 - Type of tissue damaged
 - Severity of the injury
Events in Tissue Repair

- Capillaries become very permeable
 - Introduce clotting proteins to make clot
 - Wall off injured area to prevent blood loss and infection
- Formation of granulation tissue
 - Contains capillaries and phagocytes
- Regeneration of surface epithelium just below the scab
Regeneration of Tissues

- Tissues that regenerate easily
 - Epithelial tissue
 - Fibrous connective tissue and bone
- Tissues that regenerate poorly
 - Skeletal muscle
- Tissues that are replaced largely with scar tissue
 - Cardiac muscle
 - Nervous tissue within the brain and spinal cord
Developmental Aspects of Tissue

- Epithelial tissue arises from all three primary germ layers
- Muscle and connective tissue arise from the mesoderm
- Nervous tissue arises from the ectoderm
- With old age there is a decrease in mass and viability in most tissues